小日本发现了进行中的二次共生?

最前沿的生命科学,包括发现,思想和文章。 最贴近的北美生活,包括科研,生活和绿卡。
打印 被阅读次数

Brevia

A Secondary Symbiosis in Progress?

/>Noriko Okamoto and Isao Inouye*

Algae have acquired plastids by developing an endosymbiotic relationship with either a cyanobacterium (primary endosymbiosis) or other eukaryotic algae (secondary endosymbiosis). We report a protist, which we tentatively refer to as Hatena, that hosts an endosymbiotic green algal partner but inherits it unevenly. The endosymbiosis causes drastic morphological changes to both the symbiont and the host cell architecture. This type of life cycle, in which endosymbiont integration has only partially converted the host from predator to autotroph, may represent an early stage of plastid acquisition through secondary symbiosis. 

Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.

* To whom correspondence should be addressed. E-mail: iinouye@sakura.cc.tsukuba.ac.jp


Endosymbiosis is a major driving force in the evolution and diversification of plants and algae. Plastids originated from a cyanobacterial symbiont harbored in the first eukaryotic algae, of which three "primary algae" are direct descendants: Glaucophyta and Rhodophyta (the red algae) and Viridiplantae (the green algae and land plants). After this primary endosymbiosis, successive secondary endosymbioses occurred in which a primary alga was engulfed and integrated as a plastid. Four algal divisions (Dinophyta, Cryptophyta, Heterokontophyta, and Haptophyta) plus one parasitic phylum (Apicomplexa) acquired red algal plastids, and two algal divisions (Chlorarachniophyta and Euglenophyta) acquired green algal plastids (1). 

Endosymbiosis unites different cells into one organism. Requisite steps include a lateral gene transfer from the symbiont to the host nucleus and the establishment of protein transport machinery back into the symbiont, resulting in loss of the symbiont's autonomy (2). Synchronization of host-symbiont cell cycles and cosegregation is another critical step in permanent fusion of the two partners. However, how the synchronization occurs and how the integrated organism responds to external conditions are unknown. 

Here we describe a flagellate (Fig. 1A) that appears to be in the formative stages of an ongoing endosymbiosis. The flagellate, which we tentatively refer to as Hatena ("enigmatic" in Japanese), will be formally described as a member of a recently elected division Katablepharidophyta (3). Hatena is currently uncultivable, so cells from natural populations were used for investigations. Nearly all the cells had a green "plastid" with an eyespot at the cell apex. However, this plastid was inherited by only one daughter cell (Fig. 1B), indicating the structure is a symbiont. 


 Fig. 1. (A) Hatena (ventral view). All green, symbiont-possessing cells have an eyespot at the cell apex (arrowhead). Scale bar, 10 µm. (B) A dividing cell (ventral view). The symbiont is always inherited by only one of the daughter cells. Scale bar, 10 µm. (C) The ultrastructure of eyespot integration (longitudinal view). E, eyespot granules. Scale bar, 400 nm. Inset: A magnified view of the membranes. The inner and outer plastid membranes (arrowheads), the single symbiont-enveloping membrane (double arrow), and the host plasma membrane (arrow) are tightly layered. Scale bar, 50 nm. (D) The life cycle of Hatena, based on observations of natural populations. Hatena alternates between a host phase that harbors a green endosymbiont and a predator phase that acquires the endosymbiont after division. Solid line, observed steps in the process; broken line, hypothetical steps. [View Larger Version of this Image (38K GIF file)]

We determined the identity of the endosymbiont by sequencing of the plastid 16S ribosomal DNA (rDNA) and by phylogenetic analysis. The symbiont belongs to the genus Nephroselmis (Prasinophyceae, Viridiplantae) (fig. S1), which is abundant in the habitat. 

The symbiont cell retains its nucleus, mitochondria(on), plastid, and occasionally a vestigial Golgi body, but the flagella, cytoskeleton, and endomembrane system are lost. Free-living Nephroselmis cells are flat-kidney-shaped, are ~10 µm in length, and possess a single plastid with a single pyrenoid (4). In contrast, the symbiont's plastid is more than 10 times as large (Fig. 1A) and contains multiple pyrenoids. 

Ultrastructure also indicates remarkably close interaction between the host-symbiont partnership. An eyespot (located in the endosymbiont's plastid) is always situated at the host's apex (Fig. 1A, arrowhead), where four membranes (the inner and outer plastid membranes, the symbiont-enveloping membrane, and the host's plasma membrane) are tightly apposed (Fig. 1C). The eyespot is part of a photosensor that enables phototaxis (5). Intimate morphological association between the endosymbiont and the host indicates endosymbiont-guided host phototaxis. 

The corresponding region in the colorless, symbiont-lacking cells is occupied by a complex feeding apparatus. Thus, the uptake of the symbiont also induces drastic changes to the host cell. We tested the specificity of the host-symbiont interaction by feeding symbiont-free hosts with a different Nephroselmis strain (one with 31 out of 335 base pairs different, according to partial 16S rDNA sequencing). Although the prey was engulfed and remained undigested, it did not undergo the modifications described above, suggesting a highly strain-specific interaction. 

The Hatena life cycle thus alternates from a predator phase to an autotrophic host phase (Fig. 1D). First, a green cell (step a) divides (b) into one green (c) and one colorless (d) cell. The colorless cell develops a feeding apparatus de novo (d to e) and engulfs a Nephroselmis (e to g). The symbiont plastid develops and the feeding apparatus degenerates (g to a). As we never observed any dividing cell without a symbiont (d) or with an "immature" plastid (h), symbiont acquisition and modification apparently occur within one generation. How many generations the symbiont persists is an open question. 

Hatena represents an early stage in the development of an ongoing secondary endosymbiosis. Some dinoflagellates are also known to be in the process of acquiring symbionts (6). However, past research has been focused only on symbiont changes. Hatena demonstrates changes in both host and symbiont. It now remains to be determined whether there has been lateral gene transfer between Hatena and its Nephroselmis symbiont, as such genetic amalgamation was a key step in the evolution of modern plants and algae. 


References and Notes

>
1.D. Bhattacharya, H. S. Yoon, J. D. Hackett, Bioessays 26, 50 (2004).[CrossRef][ISI][Medline]
2.P. R. Gilson, G. I. McFadden, Genetica 115, 13 (2002).[CrossRef][ISI][Medline]
3.N. Okamoto, I. Inouye, Protist 156, 163 (2005).[CrossRef][ISI][Medline]
4.I. Inouye, R. N. Pienaar, Nord. J. Bot. 4, 409 (1984).[ISI]
5.K. W. Foster, R. D. Smyth, Microbiol. Rev. 44, 572 (1980).[ISI][Medline]
6.J. D. Hackett, D. M. Anderson, D. L. Erdner, D. Bhattacharya, Am. J. Bot. 91, 1523 (2004).[Abstract/Free Full Text]
7.Supported by Japan Society for the Promotion of Sciences (JSPS) grant nos. RFTF00L0162 (I.I.) and 1612007 (N.O.) and by a JSPS Research Fellowship for Young Scientists (N.O.).

Supporting Online Material 

www.sciencemag.org/cgi/content/full/310/5746/287/DC1 

Materials and Methods 

Fig. S1 

References and Notes 

14 June 2005; accepted 14 September 2005
10.1126/science.1116125
Include this information when citing this paper.

genevalley 发表评论于
神秘的新海洋微生物
本期一篇“简报”的作者报告说,在日本的沙海滩新发现的一个海洋微生物,可能正处在将一个绿色的光合作用的海藻结合进其身体的过程中。一个类似过程的“内共生”被认为是现代陆地植物和海藻的进化中的关键一步。科学家给这个单细胞生物体起名为"Hatena",是日文“神秘”的意思。Hatena在两个状态之间变化:一部分时间它是一个没有颜色的捕食者,其身体中没有光合作用的生物体;另一部分时间它处于绿色的光合作用阶段,在这个阶段一个本来极小的绿色海藻在Hatena体内变大和生活。Hatena在它的绿色阶段分裂,产生一个绿色子体和一个无色子体。无色子体长出一个捕食工具最终吞并另外一个绿色海藻。人们已经知道有其它微生物也处于通过内共生获得叶绿粒的过程中,但是文章作者说,描述一个宿主和被吞并的生物体都发生变化情况的报告,这是第一次。
简报:A Secondary Symbiosis in Progress?, Noriko Okamoto and Isao Inouye

登录后才可评论.