}

等概率事件和进化论的证伪

大家好,小黄鹂博客开通了。
打印 被阅读次数

        进化论的理论没有证实也很难证实,因为至今我们还没有能够从实验室制造出人类的基因, 没有从实验室实现把其它生物的基因突变成人类的基因。 那篇用概率论来证伪进化论的文章大概说明了为什么这个实验的困难, 但是却不足够来说明进化论的不正确。

         这是一个非常简单的道理,稍微有点常识的人就知道那篇文章的荒谬之处。 进化论首先强调的是基因突变,从来就没有假设基因重组是一个等概率事件。这种突变很有可能在非常短的瞬间完成,由于当时的环境适合这种转变,这种转变就得以保留下来。 如果现在的环境或者实验室的环境不利于这种突变的发生,如果仅按照概率来等待这种概率的发生,那么这种突变就是一个小概率事件,基本上是不可能发生的。 这种小概率的不可能根本无法说明进化论的不可能,而是恰恰相反,它说明了进化论的另一个基本原理:适者生存。

        我们不妨再回到这个概率事件吧。父亲和儿子的基因并不完全一致,如果按照完全等概率来计算的话,这个事情永远不可能发生。但是事实上父亲和母亲的基因重组过程是在非常短时间内完成的,这种重组由于母体环境的适宜而得以顺利完成。

       这是非常简单的常识,基因的突变完成根本就无需很长的时间,也从来不是一个重组和另一个重组等概率的排队事件。我们根本无法想象,父亲和母亲的基因在重组经过了一个等概率事件。

      按照某些人的理论,父亲和母亲的基因重新组合成婴儿基因的过程中实现这样的一个排队过程:一个核苷酸首先和另一个核苷酸配对,等若干时间完成另一个配对,直到所有的配对完成;然后突然发现这种组合不是最佳的,重新打开后再一次一次的重新配合;然后再打开,再配合。。。直到找到最佳的配合方案。

      这是可能的吗?这完全不可能。 

      用等概率事件来解释基因突变就会导致上文中荒谬的排队事件,我们稍有常识就会发现这种解释的荒谬和可笑, 不明白为什么有些人要一遍一遍地重复这种可笑的行为。

      从另一方面来说,等概率的解释就相当如说子代的基因是在父亲和母亲在没有性关系下随机发生的。这种小概率事件当然没有发生,这种常识绝大多数人都能理解,根本用不着所谓的等概率事件的解释,大概只有某些神奇掌握了概率理论的人才会这样解释。 我们显然可以看到,作者的父母显然是用了最适合他们儿子/女儿生存的办法造出了他,无法理解他们的儿子女儿却可笑的理解为是他们母亲用完全等概率事件的办法筛选出他的基因。

      我以前还举过一个非常简单的例子,等概率根本无法解释谁能灭火。因为按照等概率事件,10的23次方量级的水分子怎么可能同时跑到了燃烧物质的分子旁边产生化学变化呢?但是非常显然,在某种特定的时候,这种事件的发生完全是瞬间完成的, 根本就不存在什么等概率的随机事件。

   
      难道我们能用等概率的随机事件来解释一切已经发生的事件吗? 我相信答案是显然的,所以我希望有些人不要用这种无聊的事情来混淆视听了。

两只黄鹂 发表评论于
Human brain genes differ widely from those of chimps Six million years ago, chimpanzees and humans diverged from a common ancestor and evolved into unique species. Now UCLA scientists have identified a new way to pinpoint the genes that separate us from our closest living relative and make us uniquely human. The Proceedings of the National Academy of Sciences reports the study in its Nov. 13 online edition.

"We share more than 95 percent of our genetic blueprint with chimps," explained Dr. Daniel Geschwind, principal investigator and Gordon and Virginia MacDonald Distinguished Professor of Human Genetics at the David Geffen School of Medicine. "What sets us apart from chimps are our brains: homo sapiens means 'the knowing man.'

"During evolution, changes in some genes altered how the human brain functions," he added. "Our research has identified an entirely new way to identify those genes in the small portion of our DNA that differs from the chimpanzee's."

By evaluating the correlated activity of thousands of genes, the UCLA team identified not just individual genes, but entire networks of interconnected genes whose expression patterns within the brains of humans varied from those in the chimpanzee.

"Genes don't operate in isolation each functions within a system of related genes," said first author Michael Oldham, UCLA genetics researcher. "If we examined each gene individually, it would be similar to reading every fifth word in a paragraph you don't get to see how each word relates to the other. So instead we used a systems biology approach to study each gene within its context."

The scientists identified networks of genes that correspond to specific brain regions. When they compared these networks between humans and chimps, they found that the gene networks differed the most widely in the cerebral cortex -- the brain's most highly evolved region, which is three times larger in humans than chimps.

Secondly, the researchers discovered that many of the genes that play a central role in cerebral cortex networks in humans, but not in the chimpanzee, also show significant changes at the DNA level.

"When we see alterations in a gene network that correspond to functional changes in the genome, it implies that these differences are very meaningful," said Oldham. "This finding supports the theory that variations in the DNA sequence contributed to human evolution."

Relying on a new analytical approach developed by corresponding author Steve Horvath, UCLA associate professor of human genetics and biostatistics, the UCLA team used data from DNA microarrays vast collections of tiny DNA spots -- to map the activity of virtually every gene in the genome simultaneously. By comparing gene activity in different areas of the brain, the team identified gene networks that correlated to specific brain regions. Then they compared the strength of these correlations between humans and chimps.

Many of the human-specific gene networks identified by the scientists related to learning, brain cell activity and energy metabolism.

"If you view the brain as the body's engine, our findings suggest that the human brain fires like a 12-cylinder engine, while the chimp brain works more like a 6-cylinder engine," explained Geschwind. "It's possible that our genes adapted to allow our brains to increase in size, operate at different speeds, metabolize energy faster and enhance connections between brain cells across different brain regions."

Future UCLA studies will focus on linking the expression of evolutionary genes to specific regions of the brain, such as those that regulate language, speech and other uniquely human abilities.
登录后才可评论.