计算:围困莫斯科的德军真可看到克里姆林宫吗?

打印 被阅读次数

计算:围困莫斯科的德军真可看到克里姆林宫吗?

黛绿年华

问题一:克里姆林宫中最高的建筑物伊凡大钟楼高81米。假设:天气晴朗,周围数十公里内都是极平坦的平原,并且没有一个三层楼以上的建筑物遮挡视线。问:站在81米高的伊凡大钟楼尖顶处远眺,能看到的最远处,距离伊凡大钟楼有多远?

问题二:194112月初,德軍先头裝甲部队前进到距離克里姆林宫不到32公里的地方。假设:完全如同问题一。问:德军将军们在距離克里姆林宫32公里的地方登上钟楼,是否真的可以远眺克里姆林宫?

其实这两个问题属于同一个极其简单的平面几何学的问题。

我们可以把海洋,或者小范围平原看成是规则的球面。

这样,如图所示,上述问题可以简化为:在以地球球心为圆心,地球半径(R=6371.004千米)为半径的圆周上,从高度为H的观察点A,作圆的切线,得切点即目标点B。问线段AB的长度L是多少?其实将A作为目标点,将B作为观察点,计算方法也是完全一样的。

          

. 以地球球心为圆心,以地球半径R为半径的园上,高度为H的观察点(或目标点)A,至切点即目标点(或观察点)B之间AB线段的长度L,代表能观察到目标点的最远距离。

现在,A点代表81米高的伊凡大钟楼顶点。切点B代表从A能看到的最远处;或者反过来,A点代表81米高的伊凡大钟楼顶点。切点B代表德军能看到A最远处。结果是一样的。

因为AB线是园的切线,OB线是园的半径,所以∠ABO是一个直角,在ΔAOB中,

AB2=OA2-OB2              (1),即:

L2=(H+R)2-R2=H2+2HR      (2)H2远远小于2HR,故可忽略

L=(2HR)1/2               (3)

R=6371.004千米,H=0.081千米,代入方程(3),得:

L=(2HR)1/2=(2x0.081x6371.004)1/2=32.126千米

这就是说,在距离伊凡大钟楼32.126公里的地方,德军即使蹲在地上都可以看到这座81米高的大钟楼尖顶。德军如果登上高塔,则更可以看到克里姆林宫中的建筑物。

如果我们知道德军在距离克里姆林宫32公里的地方,登上高塔后眼睛与地面的距离,我们还可以计算出德军可以观察到伊凡大钟楼从尖顶往下直到何处。此处从略。

利用方程(3),我们可以计算出不同“身高(H)”的人站在一个平坦开阔的平原上极目远眺,可以看多远(L)。这里“身高(H)”是指眼睛到地面的垂直距离,2R=12742008米:

“身高(H)”=1米:L=(1x12742008)1/2=3570

“身高(H)”=1.75米:L=(1.75x12742008)1/2=4722

“身高(H)”=2.3米:L=(2.3x12742008)1/2=5414米,等等。

---(黛绿年华)

 

黛绿年华 发表评论于

回复megchen的评论: Thanks for your comments! Mathematics is actually in our daily life.

Wishing you to be happy in the new week.

megchen 发表评论于

This is very interesting...when I watched 6 hours long former Soviet movie about that war, I have never thought of this. Thanks for sharing...
黛绿年华 发表评论于

回复xwenxuecityy的评论:

谢谢阅评!其实数学是非常有趣的学科,钻研起来,其乐无穷!祝好!
xwenxuecityy 发表评论于
过去有本“趣味数学”, 是一个俄国医生写的,就有类似问题。比如,军舰开到别国海域,隔海岸多远,岸上的敌人才看不见啦。 坐火车时,怎么计算火车速度啦。等等。
黛绿年华 发表评论于

回复Green_sky的评论:

Thanks for your appreciation! Have a good day!
Green_sky 发表评论于
I often ask my son to have a habit of trying to translate a real world problem to math problem. This is a good example.
登录后才可评论.