那么为什么会有希尔伯特第一问题呢?

戴榕菁

我们当然无法知道希尔伯特当时心里是怎么想的。不过,现在回过头去看,并不难理解为什么希尔伯特会将康托的连续性假说(Continuum Hypothesis)作为著名的希尔伯特23问题的第一个问题的原因:因为他被康托的无限集合编号法则的表面美观震撼了,因而笃信康托的无限集合的编号法则不但正确而且是度量无限集合大小的唯一正确的法则,这样一来,确实就很难再找到比自然数更长而比实数更短的无限集合了。可以说,康托发明了一个让包括希尔伯特等大亨们在内的数学友们自嗨的游戏,他们就这么玩了一百多年。。。。

所以,我这次破解希尔伯特第一问题的关键要素在于破解了它的哲学误区。但我们却不能说这次破解希尔伯特第一问题是哲学上的突破。这次的破解对于哲学作为一个学科来说没什么大的影响,它的主要影响还是在数学,它将导致集合论在很大程度上的重写-----当然,这一切都要在数学圈子的专业人员有勇气自我否定过去的错误,突破皇帝新衣的幻觉。如果他们仍然热衷于过皇帝新衣大戏的瘾,那么全世界的人都只有继续拿钱供养他们唱皇帝新衣的大戏并误导一代又一代步入数学界的学子们了。。。。。。

所以,这次的破解是哲学的成功,却不是哲学的突破而是数学的突破。。。。。。

慕容青草 发表评论于
文化走廊网军为皇帝新衣大戏助演:
QualityWithoutName:
希氏提出的问题,在希氏认定的数学(公里)体系内才有重大意义。你如果要摆脱他认定的体系,讨论他的问题就没有什么意义了。
慕容青草:
那为什么直到今天的主流教材文章中都不明确说明这点呢?
难道你的意思是这问题已经从学术错误上升到故意隐瞒全世界的人这么一个道德甚至阴谋论的高度了吗?
不过在你给希尔伯特及数学界扣故意欺骗的大帽子之前,劝你最好把希尔伯特的23个问题都捋一遍看是否所有23个问题被置入一个公理体系内,还是说每个问题自己就是一个公理。。。是否有一个容纳所有23个问题的公理。。。別到时候只有被破解的才有公理框架,沒破的就是普适。。。这比给希尔伯特扣骟子的帽子还要寒颤他,简直就是把他降低到网军的档次了。。。
QualityWithoutName:
这二十三个问题不是在同一个公理体系。专业数学家明白希氏每个问题所在的公理体系。在其对应的体系里每证明才有意义。希望你能理解上面所讲的。在一个公理体系中很难的问题,换一个公理体系可能就会很简单,即使这两个公理体系是等价的。
另外,数学只是逻辑,只需要公理,定义和形式逻辑,不需要有物理意义。
慕容青草:
你这是中式网军特有的狐狸体戏!!!小心希尔伯特的学生们告你诬陷!!!
登录后才可评论.