来源:西陆军事
作者:Candy_春 时间:2009-04
F-22作为目前服役的唯一一种第四代战斗机,一出现就收到了人们的大量关注。其先进的性能一致被大量光环所包围。在西方的强势媒体的吹捧下曾经一度被神话成“根本看不见,看得见也打不着”的无敌战机。由于我国在近期内没有制造与之抗衡的先进战斗机计划,这使得如何立足于现有装备对抗F-22称为了一个非常敏感的话题。随着F-22的入役数量越来越多。F-22对我国的空中安全将构成什么样的影响成为了一个必须考虑的问题。这里,我将从性能,战术,政治3方面分别加以讨论。来分析F-22对我国将构成什么样的威胁。
性能分析:
关于F/A-22的基本数据
起飞重量:27220KG
正常载油量:11350KG
起飞推重比:1.17
起飞翼载:350KG/M2
最大M数: 2.0M
最大表数:1480KM/H
实用升限:20000M
最大使用过载:9G
爬升率H=5KM M=0.9 243M/S
稳定盘旋过载:H=5KM M=0.9——7.0G;H=11KM M=1.6——4.3G
加速性:H=11KM M=0.8~1.6——64秒
最大瞬时盘旋角速度:28度/秒
最大转场航程:3200KM;作战半径(高—高—高):1300KM
发动机:F-119-PW-100,加力推力155.6KN,推重比10,总压比25,涵道比0.2。
雷达:APG-77AESA
武器:AIM-120A/C,AIM-9X,JDAM,M61A1机炮……
全机钛合金占41%,复合材料24%……
隐身性能:
F-22的雷达隐身性能毫无疑问是被误解的最多的方面。公众对雷达隐身特性的吹嘘与追捧已经到了掩盖真相的地步。在这里我们通过一点计算与几个实例来解开这个被迷雾所包围的谎言吧。
据美国空军公布的资料声称F-22头向RCS仅为0.0065,小于F-117的0.065。对于这个数据我们认为是缺乏可信度的。首先从材料方面考察,F-117使用的吸波材料为某种羧基铁酸盐,而F-22由于可维护性与超音速性的限制使用了结构型吸波材料(铝基碳纤维增强材料,碳-热塑性树脂复合材料或炭化硅-碳复合材料中的一种)。铁氧体涂料厚度可调吸波能力通过提高厚度的方式会增加。不考虑重量等问题铁氧体吸波涂料最佳衰减能力可达到-44dB以上。而结构性吸波材料中性能最好的SiCf最大衰减能力则只有-29dB。材料上的差距十分明显。再考察外形设计:从隐身角度说翼型不但相对厚度应该小,前缘也要尖削,然而F-22的48度后掠梯形翼显然的背离了这个原则。更加严重的是F-22机翼外段向前偏转了3度,这为雷达散射提供了很好的机会。而且从进气道方面考量,S型进气道的隐身性能肯定不会优于F-117的有遮蔽的二元进气道。从隐身的各个需要来看F-22都要弱于F-117,而F-117声称RCS为0.065(南联盟以及我国的专家认为该机的实际RCS为0.5左右)。F-22比F-117小10倍的RCS实在令人无法信服。而且,采用了相似技术外形更小诞生更晚的F-35声称RCS仅为0.065(原声称为0.0065后于2006年改为0.065)。恐怕是因为F-35将要销往外国,美国人实在无法达到这个难以置信的数字而不得不低头认错了。
进一步,我们将讨论隐身的意义:
首先,我们先要考察的是雷达探测距离公式:
式中,Rmax:雷达最大探测距离;Pmin:最小信噪比确定的可允许的接收信号最小电平;Pt:雷达发射机输出功率;G:由于共用天线Gt(发射天线最大增益)和Gr(接收天线最大增益)的共同阈值;λ:雷达波长;δ:雷达截面(RCS)
根据此公式,雷达在自由空间的最大探测距离分别与RCS,最小探测距离,输出功率,波长的四次方根成正比同时与增益的平方根成正比。该公式普遍的适用于所有雷达,不同设计的雷达不同的只是其中的Pmin,Pt,G,λ。也就是说要让雷达探测距离减少一倍RCS就要相应减少16倍这个数据是相当可观的然而要让雷达探测距离增加一倍则相当简单提高增益和提高功率都是行之有效的方法。换言之也就是说雷达的探测距离与飞机的RCS的4次方成正比。
即使接受F-117的声称RCS值。考虑其侧向RCS为2~3取概率平均值的话其平均RCS仍为0.5左右。通过自由空间雷达探测距离公式我们可以发现:F-22与F-117的隐身特性仅仅是将雷达的探测距离缩小了50%左右而已,并非不可探测。我知道这时候就会有人跳出来反对我了:既然仅此而已为什么海湾战争时F-117出勤上万架次都全身而退?这里我们就需要进行一下技术分析了:F-117历史上所面对过的敌人无非就是SAM-2/3/4/6四种防空导弹的雷达系统。以抗干扰能力最强的SAM-6“根弗”为例,其引导雷达1S91“同花顺”最大探测距离75公里最大制导距离28公里。由于60年代计算机技术的限制,当使得雷达系统主要依靠提高最小接受频率以及减小天线增益来对抗干扰。对F-117的探测距离只有14公里(无干扰)/7公里(有干扰)。由于F-117一般从6000米中空以0。8Ma进入。所以,根本没有足够的探测距离来发射导弹。F-117唯一的一个损失发生在1999年空袭南联盟时,一架F-117被导弹击落。我们同时注意到:此时正值美国空军EF-111电子战飞机退役。速度慢且短腿的EA-6B来不及为F-117提供足够的电磁掩护。于是这架呼号“天琴座31”的F-117战机不幸飞入了SAM-3的雷达探测范围内遭人鱼肉。
当然凡事总有特例,这个特例就是空对空导弹。由于导弹本身没有很大的电源,于是其数据处理能力有限。当然也不可能有人来帮助导弹进行判断。于是大多数主动空空导弹都有最小RCS这个数值,比如:R-33为5/R-77为3/Ks-172为5/R-27E_M为0.1。
探讨F-22的真正隐身能力以及其带来的意义之后,我们就应该来考虑一下如何探测该飞机了。网络上很多人支过招,但是都缺乏足够的理性。比如:架设双基雷达/使用被动雷达/研制高性能米波雷达。以上方式为什么不可行我们放到本节最后再谈。说到探测隐身飞机,最有发言权的毫无疑问是美国空军。一方面他们使用隐身飞机已经有了近30年的历史,另一方面他们也面对着RCS仅为0.6的苏联Kh-555巡航导弹的威胁。美国空军从上世纪80年代开始就在不断的改进其雷达系统以适应隐身技术带来的挑战。但是美国人并没有走双基雷达这样的路子而是对已有的雷达进行改进。1984年为了对抗“石榴石”以及引导F-117作战,美国空军对E-3进行了“雷达系统改进计划”(RSIP),研究在继续使用S波段的同时较大规模地改进APY-1/2的探测性能,使它能对付隐身飞机、巡航导弹和恶劣的电子战环境。稍晚些时候美国海军也对E-2换装了AN/APS-145雷达。经过改进后两种飞机对RCS为0.065的目标探测距离都超过了120公里。陆军也在90年代改进了“爱国者”导弹系统。改进后的GEM2+的引导头可以锁定中程弹道导弹,因此锁定隐身飞机也没有多大的问题。
我国在反隐身的道路上曾经走过弯路,由于对其了解不够。早先曾经考虑过双基雷达等技术,但是由于技术原因这些道路都没有走通。双基雷达主要问题在于授时,雷达为了计算目标距离必须精确了解雷达波发出和接受之间的时间差。而双基雷达发射机和接受机分离就带来了时间差和位置差两个问题。在没有可靠GPS授时的情况下双基雷达技术基本没有可行性。而米波雷达,由于波长较长导致衍射特性严重所以精度很差。早期的米波雷达只有双坐标(距离,方向)最新型的米波雷达可以提供3坐标但精度依然极低。“维拉”一类的被动雷达更加的无用,因为他们要求目标的辐射特性为高可截获率。现代飞机的电磁设备一般不会给他们这样的机会。然而在弯路上我们并没有走多远,军工门也没有让我们失望。举一些国产装备的例子:新近服役的YLC-2A警戒雷达雷达工作在L波段,有40个频率捷变点,垂直方向电扫水平方向机械扫描。对RCS值为2的目标探测距离400公里以上。由于采用了速度高达Gfloaps的数字处理器,该雷达具有DMTI(动态目标跟踪)以及计算机控制的CFAR(自动检测和恒虚警)能力。虽然仍不具备DBF功能但是在电磁干扰状态下探测距离同样几乎不受影响。同系列的YLC-2U制导雷达工作于S波段基本性能相当但可引导地空导弹攻击目标。两种雷达均可由6名士兵在40分钟内架设或收藏完毕。这些雷达的入役标志着我国对隐身战机的探测距离一跃提升到了200公里水平。同期的其他进口雷达也具备100公里处探测跟踪匿踪战机的功能。