早感是循环论证

宁静纯我心 感得事物人 写朴实清新. 闲书闲话养闲心,闲笔闲写记闲人;人生无虞懂珍惜,以沫相濡字字真。
打印 被阅读次数
實事求是 - 若 "實是=事實" - 早感是循环论证。今查英语,果其然 !

It’s not a proposition, so it can’t be logically right or wrong. It’s an
 admonition so it might be morally or ethically or instrumentally right or
 wrong. It’s instrumentally good advice as it applies to empirical truths. In
 mathematics and logic “true” is just a marker that preserved under the
 inference rules. “Truth” can’t be defined within an axiomatic system.
这不是一个命题,所以它在逻辑上难定是对还是错。这是一个
 告诫, 所以它可能在道德或道德或工具上正确或
 错误。这是一个很好的建议,因为它适用于经验真理。在
 数学和逻辑, “真理”不能在公理系统定义 -
 推理规则, “真理”不能在公理系统中定义。

*********
河间献王德以孝景前二年立,修学好古,实事求是。从民得善书,必为好写与之,留其真,加金帛赐以招之。
“汉书·河间献王德传”(汉书)[1]
“实事求是”(简体中文:实事求是;繁体中文:实事求是;拼音:shí shì qiú shì; Jyutping:sat6 si6 kau4 si6)是历史上最早出现在汉书中的表达(成语)。
最初,它描述了对学习和研究的态度。

在现代中国文化[编辑]

这个口号成为毛泽东主义的一个关键因素,毛泽东在1938年中共六大会议上的讲话中首先引用了实用主义。毛泽东可能记得这是他的母校湖南第一师范学校的题词。[2]从1978年开始,邓小平进一步推动中国特色社会主义的中心思想,并在此后应用于经济和政治改革。
 
Brent Meeker, former
Distinguished Fellow (Retired) at Naval Air Warfare Center, Weapons Division
(1962-2014)
Answered Dec 28
2017
· Author has 2.2k answers and 1.2m answer views
It’s not a proposition, so it can’t be logically right or wrong. It’s an
admonition so it might be morally or ethically or instrumentally right or
wrong. It’s instrumentally good advice as it applies to empirical truths. In
mathematics and logic “true” is just a marker that preserved under the
inference rules. “Truth” can’t be defined within an axiomatic system.
 ))))))))))
If you know, proposition = "a suggested scheme or plan of action, especially in a business context"

An admonition is advice with a hint of
scolding, a warning not to do something. When you're cautioned or warned about
some mistake you might be just about to make, or some looming danger, you're
receiving an admonition.

Axiomatic system

In mathematics, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A mathematical theory consists of an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system.
https://en.wikipedia.org/wiki/Axiomatic_system






登录后才可评论.