ZT光子

宇宙无边,有生命。人是动物,也是狼。来自远方的狼,在想啥呢?
打印 被阅读次数

光子Photon)是一種基本粒子,是电磁辐射量子。在量子場論裏是負責传递電磁力力載子[4]:17-18。這種作用力的效應在微觀層次或宏觀層次都可以很容易地觀察到,因為光子的静止质量为零[註 1],它可以移動至很遠距離,这也意味着它在真空中的传播速度是光速。如同其它微觀粒子,光子具有波粒二象性,能夠展現出波動性與粒子性。例如,它能在雙縫實驗裏展示出波動性,也能在光電效應實驗裏展示出粒子性[5]:1060-1068

阿尔伯特·爱因斯坦在1905年至1917年间發展出光子的現代概念,這是為了解釋一些與光的古典波動模型不相符合的實驗結果。当时被普遍接受的经典电磁理论,尽管能夠論述關於光是电磁波的概念,但是无法正確解释黑體輻射光电效应等实验现象。半古典理論麦克斯韦方程组的框架下将物质吸收光和发射光所涉及的能量量子化,而行進的光波仍採古典方法處理;如此可對黑體輻射的實驗結果做出合理解釋。爱因斯坦的主張與普朗克的半古典理論明顯不同,他提出光本身就是量子化的概念,當時愛因斯坦稱之為「光量子」(德语:das Lichtquant;英语:light quantum)[6]。雖然半古典理論對於量子力學的初始發展做出重大貢獻,從於1923年觀測到的電子對於單獨光子的康普頓散射開始,更多的實驗證據使愛因斯坦光量子假說得到充分證實[5]:1063-1065[7][8]。由於這關鍵發現,愛因斯坦於1921年獲頒諾貝爾物理學獎[9]

光子的概念带动了实验和理论物理学在多个领域的巨大进展,例如激光玻色-爱因斯坦凝聚量子场论、量子力学的统计诠释量子光學量子計算等。在物理学外的其他领域裡,這概念也找到很多重要應用,如光化学高分辨顯微術,以及分子间距测量等。在当代相关研究中,光子是研究量子计算机的基本元素,也在复杂的光通信技术,例如量子密码学等领域有重要的研究价值。

根据粒子物理标准模型,光子的存在可以满足物理定律在时空内每一点具有特定对称性的理論要求。這種對稱性稱為规范对称性,它可以決定光子的内秉属性,例如质量电荷自旋[4]:358ff。光子的自旋為1,因此是玻色子,不遵守包立不相容原理[5]:1221

 

 

 

 

量子一詞來自拉丁语quantum,意為“有多少”,代表“相當數量的某物质”。在物理學中常用到量子的概念,指一個不可分割的基本個體。例如,“光的量子”是光的單位。而延伸出的量子力學量子光學等更成為不同的專業研究領域。

其基本概念为所有的有形性質是“可量子化的”。“量子化”指其物理量的數值是特定的,而不是任意值。例如,在(休息狀態的)原子中,電子的能量是可量子化的。這決定原子的穩定和一般問題。

在20世紀的前半期,出現了新的概念。許多物理學家將量子力學視為瞭解和描述自然的的基本理論。在量子出现在世界上100多年间,经过普朗克,爱因斯坦,斯蒂芬霍金等科学家的不懈努力,已初步建立量子力学理论。

目录

  [隐藏

1 历史

2 相关方程

2.1 黑體輻射量子方程

3 參考書籍

4 參看

历史[编辑]

量子物理是研究量子化的物理分支,在1900年根据热辐射理論延伸建立量子理论。由於馬克斯·普朗克(M. Planck)试图解决黑體輻射问题,所以他大胆提出量子假设,并得出了普朗克辐射定律,沿用至今。

當時德國物理界聚焦于黑體辐射问题的研究。馬克斯·普朗克在1900年12月14日的德國物理學學會會議中第一次發表能量量子化數值、Avogadro-Loschmidt數的數值、一個分子摩尔(mole)的數值及基本電荷。其數值比以前的更準確,提出的理论也成功解决了黑體輻射的问题,标志着量子力學的誕生。

量子假设的提出有力地衝擊了经典物理學,促进物理学进入微观层面,奠基现代物理学。但直到現在,物理学家关于量子力学的一些假设仍然不能被充分地证明,仍有很多需要研究的地方。

 

 

 

德米特里·伊萬諾維奇·門捷列夫俄语Дми?трий Ива?нович Менделе?ев 关于这个音频文件 讀音帮助·信息),1834年2月8日-1907年2月2日),19世纪俄国科學家,發現化學元素的週期性,依照原子量,製作出世界上第一張元素週期表,并据以预见了一些尚未发现的元素。

目录

  [隐藏

1 早年生活

2 科研生涯

3 元素週期表

4 其它重要贡献

5 紀念

6 参见

7 参考来源

8 延伸閱讀

9 外部链接

早年生活[编辑]

门捷列夫于1834年生於俄國西伯利亞托博爾斯克市,這個時代,正是歐洲資本主義迅速發展時期,科學技術的發明、改良一日千里,化學也同其它科學一樣,取得了驚人的進展。13岁时,门捷列夫的父亲去世,母亲的工厂又被一场大火毁于一旦,家境一落千丈,但门捷列夫考入了托博爾斯克文科中学,也算是家里的安慰。1849年,门捷列夫的母亲变卖家产,带着孩子四处求学,先后到过莫斯科柏林巴黎,最后在圣彼得堡高等師範學校为门捷列夫找到一个入读机会,1850年,门捷列夫就读物理數學系。同年9月,门捷列夫的母亲病逝,门捷列夫决心发愤读书,1855年以優異的成績畢業,但由于被诊断出有肺结核,不得不到黑海边上的克里米亚半岛休养。在此期间,门捷列夫读完了硕士,并于两年后回到圣彼得堡。期间先後到過辛菲羅波爾敖德薩擔任中學教師。1857年他被圣彼得堡大学破格任命为化学讲师。

科研生涯[编辑]

1859年至1861年间,门捷列夫被选拔去德国和法国留学,在海德堡进行流体毛细现象以及光谱仪制作的研究。1861年八月底他发表了一本关于光谱仪的著作,并赢得了很高的评价。1862年,门捷列夫结婚,第二年,成为圣彼得堡国立技术大学的教授[1]。1865年被圣彼得堡大学授予博士学位,并聘为化学教授[2]

1869年,门捷列夫发现了元素周期律,並就此发表了世界上第一份元素周期表,按原子量的大小順序排的同時,將原子價相似的元素上下排成縱列。1893年起,门捷列夫担任度量衡局局长。1890年门捷列夫当选为英国皇家学会外国会员[3],并与1905年获得该学会的科普利奖章[4]。1906年,诺贝尔化學獎委員會提名門捷列夫为当年的诺贝尔化学奖得主,但是在瑞典皇家科學院的大会上,有人提出用亨利·莫瓦桑替代门捷列夫,而科学院内影响力的化學家阿伦尼乌斯强烈反对提名门捷列夫,支持莫瓦桑,他的理由是发明元素周期表这项贡献对于1906年的诺贝尔奖来说太老了。而同时代的人认为真实的原因是门捷列夫曾批評過阿伦尼乌斯的离解理论,阿伦尼乌斯伺机报复[4]。最终,皇家科学院的大多数投票支持莫瓦桑。次年(1907年)2月2日,门捷列夫因心肌梗塞去世。

元素週期表[编辑]

門捷列夫研究元素週期律,前后一共花費了二十年的時間。在1863年,科学家们已經發現了56種化学元素,并且以平均每年一个新元素增加着,但是這些元素的性质顯得雜亂無章,有一些科學家試著將這些元素按照各自的化学性质整理成週期表,如:1829 年德国化学家德贝莱纳提出了“三元素组”观点[5][6] ,把当时已知的44 种元素中的15 种,分成5 组,指出每组的三元素性质相似,而且中间元素的原子量等于较轻和较重的两个元素原子量之和的一半。例如,性质相似,锶的原子量大约是钙和钡的原子量之和的一半。以及等元素也有类似的关系。然而更进一步,就会发现其它化学元素并不能满足这些关系,所以并没有引起化学家们的重视。法国德尚寇特斯(B. De Chancortois,1820年-1886年)提出的关于元素性质的“螺旋图”[7]德国迈尔(J. L. Meyer,1830年-1895年)发表“六元素表”,以及英国約翰·紐蘭茲(J. A. R Newlands,1837年-1898年)发表的关于元素性质的“八音律”,但成果皆不盡理想。[8]

 

门捷列夫1871年的元素周期表

門捷列夫為了找出元素之间的规律,做了大量的考察研究,获得了一手的资料。1862年,他对巴库油田进行考察时,重测了一些元素的原子量。在1860年代初的工作中,他把一些元素列成下面样式的表格,这是元素周期表的雏形。[9][10]

Cl 35.5

K 39

Ca 40

Br 80

Rb 85

Sr 88

I 127

Cs 133

Ba 137

1869年3月,门捷列夫在他题为《元素性质与原子量的关系》的一篇论文中首次提出了元素周期律,发表了第一张元素周期表[11]。这个表包括了当时科学家已知的63种元素,表中共有67个位置,尚有4个空位只有原子量而没有元素名称,门捷列夫假设,有这种原子量的未知元素存在。在表中,他还对四种元素当时公认的原子量表示质疑。比如根据碲在元素周期表中的位置在的前面,门捷列夫认为碲的原子量应该比碘小,而不是当时人认为的比碘大。这是门捷列夫发现元素周期率的最初思想。在他的第一张元素周期表发表以后,门捷列夫对元素周期律继续进行了深入研究。特别是重新审定了许多元素的原子量。在对元素的原子量进行审定之后,于1871年12月发表了他的第二个元素周期表。与他的第一张元素周期表相比,第二个元素周期表更完备、更精确、更系统。

 

門捷列夫第一份英文版本(建基於俄文第五版)的元素周期表

门捷列夫在他的周期表裡為「未知元素」預留了空位,并依照这些未知元素应当具有的性质给他们起名为類硼、類鋁、類硅等等。在1869年门捷列夫首次发表元素周期律时,他的成果并不为当时的化学家们所认可[11]。在隨後的幾年中,門捷列夫預言的類硼、類鋁、類硅等11種未知元素陸續被發現,即以後發現的[12]。这些元素的各種性質與门捷列夫的預言驚人地吻合,特別是後來發現的又給元素周期表增加了新的惰性氣體[13]。他的名著、伴随着元素周期律而诞生的《化学原理》,在十九世纪后期和二十世纪初,被国际化学界公认为标准著作,前后共出了八版,影响了一代又一代的化学家。

其它重要贡献[编辑]

门捷列夫把米制系统引入到俄罗斯帝国

1887年提出溶液水化理论,为近代溶液学说的先驱。

1860年发现气体的临界温度。

1888年首先提出煤地下气化的主张。

1892年,由俄罗斯帝国海军委托,门捷列夫发明了焦珂罗酊,一种基于硝化纤维无烟火药,但由于成本原因并没有采纳使用。

紀念[编辑]

有許多的地名或事物的名稱和门捷列夫的名字有關。

聖彼得堡負責全國性及國際性精密量測的國家計量研究所,是以门捷列夫的名字命名[14],在旁邊有门捷列夫的紀念館,其中有照片,门捷列夫坐著的雕像,以上面繪有门捷列夫週期表的牆。

Twelve Collegia建築物在门捷列夫的時代是师范学院,現在是圣彼得堡国立大学的中心,有一個門捷列夫紀念博物館[15],前面的街也因此命名為門捷列夫街。

在莫斯科有門捷列夫化工大學[16]

原子序101號的合成化學元素,也依門捷列夫的名稱命名,其英文名稱為mendelevium,縮寫是Md(曾經用Mv),中文名稱為,是一個金屬性的錒系超鈾元素,一般是由α粒子撞擊原子來製備。

月球上在背對地球的一側有一個撞擊坑,命名為門得列夫 (撞擊坑)

俄羅斯科學院自1998年起頒發门捷列夫金獎,表揚在科學及技術上的成就,之前是由蘇聯科學院從1962年開始頒發。

 

 

 

门捷列夫元素周期表新元素可能以莫斯科命名

2015821

【 字号: 大 中 小 】

打印页面

【《透视俄罗斯》消息】国际理论与应用化学协会今年年底前可能会承认门捷列夫元素周期表的第115号元素的存在。

 

 

 

约翰内斯·开普勒[编辑]

 

本文介紹的是天文学家。關於孙燕姿的音乐专辑,詳見「克卜勒 (孙燕姿专辑)」。

Kepler」的各地常用別名

大陸

开普勒

臺灣

克卜勒

港澳

開普勒

 

约翰内斯·克卜勒

Johannes Kepler 1610.jpg

克卜勒1610年肖像畫,作者不詳。

出生

1571年12月27日
神聖羅馬帝國威爾司徒加

逝世

1630年11月15日(58歲)
神聖羅馬帝國巴伐利亞雷根斯堡

居住地

巴登-符騰堡施蒂利亞州波希米亞上奧地利

研究領域

天文學占星學數學自然哲學

任职於

林茨大學

母校

蒂賓根大學

著名成就

克卜勒定律
克卜勒猜想

约翰内斯·开普勒德语:Johannes Kepler [?k??pl?],1571年12月27日-1630年11月15日),德国天文學家數學家。开普勒是十七世紀科學革命的關鍵人物。他最為人知的成就為开普勒定律,這是稍後天文學家根據他的著作《新天文学》、《世界的和諧》、《哥白尼天文学概要》萃取而成的三條定律。這些傑作對艾薩克·牛頓影響極大,啟發牛頓後來想出牛頓萬有引力定律

在他的职业生涯中,开普勒曾在奥地利格拉茨的一家神学院担任数学教师,成为汉斯·乌尔里奇·艾根伯格亲王(Hans Ulrich von Eggenberg)的同事。后来,他成了天文学家第谷·布拉赫的助手,并最终成为皇帝鲁道夫二世(Rudolf II)及其两任继任者马蒂亚斯(Matthias)和费迪南二世的皇家数学家。他还曾经在奥地利林茨担任过数学教师及华伦斯坦(Wallenstein)将军的顾问。此外,他在光学领域做了基础性的工作,发明了一种改进型的折光式望远镜(开普勒望远镜),并提及了同时期的伽利略利用望远镜得到的发现。

开普勒生活的年代,天文学与占星学没有清楚的区分,但是天文学(文科中数学的分支)与物理学(自然哲学的分支)却有着明显的区分。由于宗教上信奉上帝根据借助自然理性之光就可理解的计划创造了世界,受此驱动,开普勒还将宗教界的争论记录到他的作品中。[1]开普勒将他的新天文学描述为“天体物理学”、[2]“到亚里士多德形而上学的旅行”、[3]“亚里士多德宇宙论的补充”、[4]“通过将天文学作为通用数学物理学的一部分改变古代传统的物理宇宙学。[5]

 

 

[cí gǎn xiàn]  

磁感线

 编辑

磁感线(Magnetic Induction Iine):在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S极到N极。

中文名

磁感线

为神马闭合?非直线?

大爆炸英语:Big Bang)又稱大霹靂,是描述宇宙诞生初始条件及其后续演化的宇宙学模型,这一模型得到了当今科学研究和观测最广泛且最精确的支持[1][2]。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的(根据2013年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.98 ± 0.37亿年[3][4][5][6][7]),并经过不断的膨胀到达今天的状态。

大爆炸这一模型的框架基于爱因斯坦广义相对论,又在场方程的求解上作出了一定的简化(例如空间的均匀各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出膨胀宇宙的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星团视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大[8]。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态[9][10][11],大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中轻元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的轻元素丰度的理论被称作太初核合成

大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处[12][13][14]。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用轻元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。

目录

  [隐藏

1 动机和发展

2 概述

2.1 大爆炸年表

2.2 基本假设

2.3 弗里德曼-勒梅特-罗伯逊-沃尔克度规

2.4 视界

3 观测证据

3.1 哈勃定律

3.2 宇宙微波背景辐射

3.3 原始物质丰度

3.4 星系演变和分布

3.5 其他证据

4 特点、疑点和问题

4.1 视界问题

4.2 平坦性问题

4.3 磁单极子问题

4.4 重子不对称性

4.5 球状星团年龄

4.6 暗物质

4.7 暗能量

5 大爆炸宇宙的未来

6 超越大爆炸理论的物理学

7 哲学和宗教诠释

8 注釋

9 参考文献

10 外部链接

 

 

量子力学

 

(物理学理论)

 编辑

量子力学(Quantum Mechanics),它是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。

 

 

学科简史编辑

量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学固体物理学核物理学粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。

量子力学是非常小的领域——亚原子粒子中的主要物理学理论[1]  。该理论形成于20世纪早期,彻底改变了科学家对物质组成成分的观点。在量子世界,粒子并非是台球,而是嗡嗡跳跃的概率云,它们并不只存在一个位置,也不会从点A通过一条单一路径到达点B[1]  。根据量子理论,粒子的行为常常像,用于描述粒子行为的“波函数”预测一个粒子可能的特性,诸如它的位置和速度,而非实际的特性[1]  。物理学中有些怪异的想法,诸如纠缠和不确定性原理,就源于量子力学[1]  。

电子云电子云

19世纪末,经典力学经典电动力学在描述微观系统时的不足越来越明显。量子力学是在20世纪初由马克斯·普朗克尼尔斯·玻尔沃纳·海森堡埃尔温·薛定谔沃尔夫冈·泡利路易·德布罗意马克斯·玻恩恩里科·费米保罗·狄拉克阿尔伯特·爱因斯坦康普顿等一大批物理学家共同创立的。通过量子力学的发展人们对物质的结构以及其相互作用的见解被革命化地改变。通过量子力学许多现象才得以真正地被解释,新的、无法直接想象出来的现象被预言,但是这些现象可以通过量子力学被精确地计算出来,而且后来也获得了非常精确的实验证明。除通过广义相对论描写的引力外,至今所有其它物理基本相互作用均可以在量子力学的框架内描写(量子场论)。

有人引用量子力学中的随机性支持自由意志说,但是第一,这种微观尺度上的随机性和通常意义下的宏观的自由意志之间仍然有着难以逾越的距离;第二,这种随机性是否不可约简(irreducible)还难以证明,因为人们在微观尺度上的观察能力仍然有限。自然界是否真有随机性还是一个悬而未决的问题。对这个鸿沟起决定作用的就是普朗克常数。统计学中的许多随机事件的例子,严格说来实为决定性的。

在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体系的一种可能状态。对应于代表该量的算符对其波函数的作用;波函数的模平方代表作为其变量的物理量出现的几率密度

量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。

1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出普朗克公式,正确地给出了黑体辐射能量分布。

1905年,爱因斯坦引进光量子光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。

1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个

普朗克普朗克

定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。

在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波

德布罗意的物质波方程:E=?ω,p=h/λ,其中?=h/2π,可以由

  

得到

 

由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。

1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩约尔当一起建立起矩阵力学;1926年,薛定谔基于量子性是微

波粒二象性波粒二象性

观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。

当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。

量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯(又称海森堡,下同)和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。

海森堡还提出了测不准原理,原理的公式表达如下:ΔxΔp≥?/2=h/4π。

基本原理编辑

量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。

薛定谔薛定谔

海森堡海森堡

狄拉克狄拉克

状态函数

在量子力学中,一个

玻尔玻尔

物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。 (一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。

根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。

状态函数可以表示为展开在正交空间集里的态矢比如

  

,其中|i>为彼此正交的空间基矢,

  

为狄拉克函数,满足正交归一性质。 态函数满足薛定谔波动方程,

  

,分离变数后就能得到不显含时状态下的演化方程

  

,En是能量本征值,H是哈密顿算子

于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

微观体系

体系状态

但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。

据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。

微观体系

20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的

量子力学量子力学

事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。

量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。

人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可 能性。

不确定性

量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离 . 不确定性指经济行为者在事先不能准确地知道自己的某种决策的结果。或者说,只要经济行为者的一种决策的可能结果不止一种,就会产生不确定性。

不确定性也指量子力学中量子运动的不确定性。由于观测对某些量的干扰,使得与它关联的量(共轭量)不准确。这是不确定性的起源。

在量子力学中,不确定性指测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。

在经典物理学中,可以用质点的位置和动量精确地描述它的运动。同时知道了加速度,甚至可以预言质点接下来任意时刻的位置和动量,从而描绘出轨迹。但在微观物理学中,不确定性告诉我们,如果要更准确地测量质点的位置,那么测得的动量就更不准确。也就是说,不可能同时准确地测得一个粒子的位置和动量,因而也就不能用轨迹来描述粒子的运动。这就是不确定性原理的具体解释。

玻尔理论

玻尔,量子力学的杰出贡献者,玻尔指出:

电子云电子云

电子轨道量子化概念。玻尔认为, 原子核具有一定的能级,当原子吸收能量,原子就跃迁更高能级或激发态,当原子放出能量,原子就跃迁至更低能级或基态,原子能级是否发生跃迁,关键在两能级之间的差值。根据这种理论,可从理论计算出里德伯常理,与实验符合的相当好。可玻尔理论也具有局限性,对于较大原子,计算结果误差就很大,玻尔还是保留了宏观世界中轨道的概念,其实电子在空间出现的坐标具有不确定性,电子聚集的多,就说明电子在这里出现的概率较大,反之,概率较小。很多电子聚集在一起,可以形象的称为电子云

泡利原理

由于从原则上,无法彻底确定一个量子物理系统的状态,因此在量子力学中内在特性(比如质量、电荷等)完全相同的粒子之间的区分,失去了其意义。在经典力学中,每个粒子的位置和动量,全部是完全可知的,它们的轨迹可以被预言。通过一个测量,可以确定每一个粒子。在量子力学中,每个粒子的位置和动量是由波函数表达,因此,当几个粒子的波函数互相重叠时,给每个粒子“挂上一个标签”的做法失去了其意义。

这个全同粒子(identical particles) 的不可区分性,对状态的对称性,以及多粒子系统的统计力学,有深远的影响。比如说,一个由全同粒子组成的多粒子系统的状态,在交换两个粒子“1”和粒子“2”时,我们可以证明,不是对称的,就是反对称的。对称状态的粒子是被称为玻色子,反对称状态的粒子是被称为费米子。此外自旋的对换也形成对称:自旋为半数的粒子(如电子、质子中子)是反对称的,因此是费米子;自旋为整数的粒子(如光子)是对称的,因此是玻色子。

这个深奥的粒子的自旋、对称和统计学之间关系,只有通过相对论量子场论才能导出,但它也影响到了非相对论量子力学中的现象。费米子的反对称性的一个结果是泡利不相容原理,即两个费米子无法占据同一状态。这个原理拥有极大的实用意义。它表示在我们的由原子组成的物质世界里,电子无法同时占据同一状态,因此在最低状态被占据后,下一个电子必须占据次低的状态,直到所有的状态均被满足为止。这个现象决定了物质的物理和化学特性。

费米子与玻色子的状态的热分布也相差很大:玻色子遵循玻色-爱因斯坦统计,而费米子则遵循费米-狄拉克统计

历史背景编辑

19世纪末20世纪初,经典物理已经发展到了相当完善的地步,但在实验方面又遇到了一些严重的困难,这些困难被看作是“晴朗天空的几朵乌云”,正是这几朵乌云引发了物理界的变革。下面简述几个困难:

黑体辐射问题

19世纪末,许多物理学家对黑体辐射非常感兴趣。

黑体是一个理想化了的物体,它可以吸收,所有照射到它上面的辐射,并将这些辐射转化为热辐射,这个热辐射的光谱特征仅与该黑体的温度有关。使用经典物理这个关系无法被解释。通过将物体中的原子看作微小的谐振子,马克斯·普朗克得以获得了一个黑体辐射的普朗克公式。但是在引导这个公式时,他不得不假设这些原子谐振子的能量,不是连续的(这与经典物理学的观点相违背),而是离散的: En=nhν

这里n是一个整数,h是一个自然常数。(后来证明正确的公式,应该以n+1/2来代替n,参见零点能量。)。1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。其值:

值

光电效应实验

由于紫外线照射,大量电子从金属表面逸出。经研究发现,光电效应呈现以下几个特点:

光电效应光电效应

a. 有一个确定的临界频率,只有入射光的频率大于临界频率,才会有光电子逸出。

b. 每个光电子的能量只与照射光的频率有关。

c. 入射光频率大于临界频率时,只要光一照上,几乎立刻观测到光电子。

以上3个特点,c是定量上的问题,而a、b在原则上无法用经典物理来解释。

原子光谱学

光谱分析积累了相当丰富的资料,不少科学家对它们进行了整理与分析,发现原子光谱是呈分立的线状光谱而不是连续分布。谱线的波长也有一个很简单的规律。

Rutherford模型发现后,按照经典电动力学,加速运动的带电粒子将不断辐射而丧失能量。故,围绕原子核运动的电子终会因大量丧失能量而’掉到’原子核中去。这样原子也就崩溃了。现实世界表明,原子是稳定的存在着。

能量均分定理

在温度很低的时候能量均分定理不适用。

光量子理论

量子理论是首先在黑体辐射问题上突破的。Planck为了从理论上推导他的公式,提出了量子的概念-h,不过在当时没有引起很多人的注意。Einstein利用量子假设提出了光量子的概念,从而解决了光电效应的问题。Einstein还进一步把能量不连续的概念用到了固体中原子的振动上去,成功的解决了固体比热在T→0K时趋于0的现象。光量子概念在Compton散射实验中得到了直接的验证。

玻尔的量子论

Bohr把Planck-Einstein的概念创造性的用来解决原子结构和原子光谱的问题,提出了他的原子的量子论。主要包括两个方面:

a. 原子能且只能稳定的存在分立的能量相对应的一系列的状态中。这些状态成为定态。

b. 原子在两个定态之间跃迁时,吸收或发射的频率v是唯一的,由hv=En-Em 给出。

Bohr的理论取得了很大的成功,首次打开了人们认识原子结构的大门,但是随着人们对原子认识进一步加深,它存在的问题和局限性也逐渐为人们发现。

德布罗意波

在Planck与Einstein的光量子理论及Bohr的原子量子论的启发下,考虑到光具有波粒二象性,de Broglie根据类比的原则,设想实物粒子也具有波粒二象性。他提出这个假设,一方面企图把实物粒子与光统一起来,另一方面是为了更自然的去理解能量的不连续性,以克服Bohr量子化条件带有人为性质的缺点。实物粒子波动性的直接证明,是在1927年的电子衍射实验中实现的。

量子物理学

量子力学本身是在1923-1927年一段时间中建立起来的。两个等价的理论---矩阵力学和波动力学几乎同时提出。矩阵力学的提出与Bohr的早期量子论有很密切的关系。Heisenberg一方面继承了早期量子论中合理的内核,如能量量子化、定态、跃迁等概念,同时又摒弃了一些没有实验根据的概念,如电子轨道的概念。Heisenberg、Bohn和Jordan的矩阵力学,从物理上可观测量,赋予每一个物理量一个矩阵,它们的代数运算规则与经典物理量不同,遵守乘法不可易的代数。波动力学来源于物质波的思想。Schr dinger在物质波的启发下,找到一个量子体系物质波的运动方程-Schr dinger方程,它是波动力学的核心。后来Schr dinger还证明,矩阵力学与波动力学完全等价,它是同一种力学规律的两种不同形式的表述。事实上,量子理论还可以更为普遍的表述出来,这是Dirac和Jordan的工作。

量子物理学的建立是许多物理学家共同努力的结晶,它标志着物理学研究工作第一次集体的胜利。

实验现象编辑

光电效应

1905年,阿尔伯特·爱因斯坦通过扩展普朗克的量子理论,提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释光电效应。海因里希·鲁道夫·赫兹菲利普·莱纳德等人的实验,发现通过光照,可以从金属中打出电子来。同时他们可以测量这些电子的动能。不论入射光的强度,只有当光的频率,超过一个临限值(截止频率)后,才会有电子被射出。此后被打出的电子的动能,随光的频率线性升高,而光的强度仅决定射出的电子的数量。爱因斯坦提出了光的量子(光子这个名称后来才出现)的理论,来解释这个现象。光的量子的能量为hν

在光电效应中这个能量被用来将金属中的电子射出(逸出功

  

)和加速电子(动能):

爱因斯坦光电效应方程:

 

 

=hν-

 

这里m是电子的质量,v是其速度。假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。

原子能级跃迁

20世纪初卢瑟福模型是当时被认为正确的原子模型。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。在这个过程中库仑力与离心力必须平衡。但是这个模型有两个问题无法解决。首先,按照经典电磁学,这个模型不稳定。按照电磁学,电子不断地在它的运转过程中被加速,同时应该通过放射电磁波丧失其能量,这样它很快就会坠入原子核。其次原子的发射光谱,由一系列离散的发射线组成,比如氢原子的发射光谱由一个紫外线系列(赖曼系)、一个可见光系列(巴耳末系)和其它的红外线系列组成。按照经典理论原子的发射谱应该是连续的。

1913年,尼尔斯·玻尔提出了以他命名的玻尔模型,这个模型为原子结构和光谱线,给出了一个理论原理。玻尔认为电子只能在一定能量En的轨道上运转。假如一个电子,从一个能量比较高的轨道(En),跃到一个能量比较低的轨道(Em)上时,它发射的光的频率为。

通过吸收同样频率的光子,可以从低能的轨道,跃到高能的轨道上。

玻尔模型可以解释氢原子,改善的玻尔模型,还可以解释只有一个电子的离子,即He+,Li2+,Be3+等。但无法准确地解释其它原子的物理现象

电子的波动性

德布罗意假设,电子也同时伴随着一个波,他预言电子在通过一个小孔或者晶体的时候,应该会产生一个可观测的衍射现象。1925年,当戴维孙和革末在进行电子在镍晶体中的散射实验时,首次得到了电子在晶体中的衍射现象。当他们了解到德布罗意的工作以后,于1927年又较精确地进行了这个实验。实验结果与德布罗意波的公式完全符合,从而有力地证明了电子的波动性。[4] 

电子的波动性也同样表现在电子在通过双狭缝时的干涉现象中。如果每次只发射一个电子,它将以波的形式通过双缝后,在感光屏上随机地激发出一个小亮点。多次发射单个电子或者一次发射多个电子,感光屏上将会出现明暗相间的干涉条纹。这就再次证明了电子的波动性。[5] 

电子打在屏幕上的位置,有一定的分布概率,随时间可以看出双缝衍射所特有的条纹图像。假如一个光缝被关闭的话,所形成的图像是单缝特有的波的分布概率。

从来不可能有半个电子,所以在这个电子的双缝干涉实验中,是电子以波的形式同时穿过两条缝,自己与自己发生了干涉,不能错误地认为是两个不同的电子之间的干涉。值得强调的是,这里波函数的叠加,是概率幅的叠加而不是如经典例子那样的概率叠加,这个“态叠加原理”是量子力学的一个基本假设。[6] 

 

相对论

 编辑

相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦创立,依据研究的对象不同分为狭义相对论广义相对论。相对论的基本假设是相对性原理,即物理定律参照系的选择无关。

狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。它发展了牛顿力学,推动物理学发展到一个新的高度。

狭义相对性原理是相对论的两个基本假定,在目前实验的观测下,物体的运动与相对论是吻合很好的,所以目前普遍认为相对论是正确的理论。

 

 

自由落体定律

 编辑

地球上空的物体在以地心为描述其运动的参照点时,它是围绕地球做匀速圆周运动,物体在与地心连线的方向上受到的合外力是一个指向地球中心的向心力,这个向心力由物体与地球之间的万有引力提供

 

万有引力定律艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。牛顿的普适万有引力定律表示如下:

任意两个质点有通过连心线方向上的力相互吸引。该引力的大小与它们的质量乘积成正比,与它们距离的平方成反比,与两物体的化学本质或物理状态以及中介物质无关。

以數學表示为:F=Gfrac{m_1m_2}{r^2}

(更严谨的表达请见下文中的矢量式方程。)

其中:

F: 两个物体之间的引力

G万有引力常数

{{m}_{1}}: 物体1的质量

{{m}_{2}}: 物体2的质量

r: 两个物体之间的距离

依照国际单位制F的单位为牛顿(N),m1m2的单位为千克(kg),r 的单位为米(m),常数G近似地等于6.67 × 10−11 N m2 kg−2(牛顿米的平方每千克的平方)

 

 

 

牛顿三大定律
牛顿三大定律是力学中重要的定律,它是研究经典力学的基础。
1.牛顿第一定律
内容:任何物体都保持静止或匀速直线运动的状态,直到受到其它物体的作用力迫使它改变这种状态为止。
说明:物体都有维持静止和作匀速直线运动的趋势,因此物体的运动状态是由它的运动速度决定的,没有外力,它的运动状态是不会改变的。物体的这种性质称为惯性。所以牛顿第一定律也称为惯性定律。第一定律也阐明了力的概念。明确了力是物体间的相互作用,指出了是力改变了物体的运动状态。因为加速度是描写物体运动状态的变化,所以力是和加速度相联系的,而不是和速度相联系的。在日常生活中不注意这点,往往容易产生错觉。
注意:牛顿第一定律并不是在所有的参照系里都成立,实际上它只在惯性参照系里才成立。因此常常把牛顿第一定律是否成立,作为一个参照系是否惯性参照系的判据。
2.牛顿第二定律
内容:物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的惯性质量成反比。
第二定律定量描述了力作用的效果,定量地量度了物体的惯性大小。它是矢量式,并且是瞬时关系。
要强调的是:物体受到的合外力,会产生加速度,可能使物体的运动状态或速度发生改变,但是这种改变是和物体本身的运动状态有关的。
真空中,由于没有空气阻力,各种物体因为只受到重力,则无论它们的质量如何,都具有的相同的加速度。因此在作自由落体时,在相同的时间间隔中,它们的速度改变是相同的。
3.牛顿第三定律
内容:两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。
说明:要改变一个物体的运动状态,必须有其它物体和它相互作用。物体之间的相互作用是通过力体现的。并且指出力的作用是相互的,有作用必有反作用力。它们是作用在同一条直线上,大小相等,方向相反。
另需要注意:
(1)作用力和反作用力是没有主次、先后之分。同时产生、同时消失。
(2)这一对力是作用在不同物体上,不可能抵消。
(3)作用力和反作用力必须是同一性质的力。
(4)与参照系无关。

登录后才可评论.