CCR5基因敲除小鼠有报道对部分炎症免疫反应下降,对机体有保护作用。然而,也有负面作用的报道:
1)
C-C chemokine receptor type 5 deficiency exacerbates alcoholic fatty liver disease through pro-inflammatory cytokines and chemokines-induced hepatic inflammation.
Abstract
BACKGROUND AND AIM:Chemokines and chemokine receptors implicated with alcoholic liver disease. Studies have shown that inflammation and oxidative stress induce fat molecules aggregation in liver. We evaluated the relationship between alcoholic fatty liver disease and C-C chemokine receptor 5 (CCR5) and impact of inflammation and oxidative stress in fat molecule deposition.
METHODS:Lieber-DeCarli diet containing ethanol or isocaloric control diets were fed to wild-type and CCR5 knockout mice for 10 days and gavaged with a single dose of ethanol or isocaloric maltose dextrin at 11th day. Cytokine, chemokine, and reactive oxygen species levels were measured in liver tissues to study the role of CCR5 in alcoholic fatty liver disease.
RESULTS:C-C chemokine receptor type 5 knockout mice exacerbated ethanol-induced liver injury. Serum levels of aspartate aminotransferase and alanine aminotransferase were higher in CCR5 knockout mice than wild-type mice, and CCR5 knockout mice showed more severe lipid accumulation in liver tissue than wild-type mice after ethanol feeding. Increased expressions of pro-inflammatory cytokines TNF-α and IL-6 and chemokines CCL2, CCL3, CCL4, and CCL5 result in exacerbation of hepatitis in CCR5 knockout mice after ethanol feeding. Oxidative stress induced by reactive oxygen species was more severe in CCR5 knockout mice, and increasing level of fatty acid import and decreasing level of lipid degradation resulted in lipid accumulation in ethanol-fed CCR5 knockout mice.
CONCLUSION: Deficiency of CCR5 exacerbates alcoholic fatty liver disease by hepatic inflammation induced by pro-inflammatory cytokines and chemokines and oxidative stress.
CCR5缺乏加重酒精性脂肪肝。2)
CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function.
Abstract
Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.
CCR5缺乏增强个体对LPS的反应性,从而加重炎症和记忆损害。
3)